قوانين الرياضيات

قوانين الرياضيات

جدول المحتويات

الرياضيات

في نظر العديد من العلماء تعتبر الرياضيات بجميع فروعها وقوانينها لغة العلم التي من خلالها نعبر عن التجارب العلمية والظواهر الطبيعية المختلفة، فمن خلال قوانينها نستطيع تفسير وتبسيط الظواهر الطبيعية المختلفة وعمل أنظمة رياضية تحاكي هذه الظواهر وتقوم بتوضيحها وتبين العوامل التي تعتمد عليها مثل المعادلات الرياضية المستخدمة في تحديد العمر النصفي لاضمحلال العناصر المشعة وغيرها من الأنظمة، فالقوانين الرياضية تدخل في جميع مجالات العلم حيث لا نستطيع كتابة تقرير أو عمل تجربة، أو تفسير معضلة علمية دون اللجوء إلى القوانين والقواعد الرياضية التي من خلالها نحصل على قيم وحلول تشبه أو تساوي النتائج التي نحصل عليها من خلال التجارب العلمية المختلفة، ومن خلال هذا المقال سوف نعرض عدد من القوانين الرياضية المشهورة في المجالات العلمية المختلفة.


قانون فيتاغورس والقانون العام للمثلثات

يعتبر قانون فيثاغورس حالة خاصة من القانون العام للمثلثات أو المعروف "بقانون جيث التمام" حيث يستخدم قانون فيثاغورس فقط على المثلثات قائمة الزاوية بينما القانون العام يستخدم لجميع المثلثات، هنالك العديد من المجالات والتطبيقات العلمية والعملية التي نستخدم فيها قانون فيثاغورس والقانون العام، ومن هذه التطبيقات إيجاد محصلة القوى المؤثرة على جسم معين وكذلك تستخدم لدى الحرفيين في عمليات بناء المنازل وتصنيع بعض الأدوات، يقوم كل من القانون العام وقانون فيثاغورس على فكرة إيجاد قيمة أطول ضلع في المثلث وذلك من خلال العلاقات التالية:

قانون جيب التمام وقانون فيثاغورس:

نفرض أن لدينا مثلث له ثلاثة أضلاع (س، ص، ع) حيث الزاوية المحصورة بين الضلعين (س، ص) تساوي ? فإن مقدار الضلع (ع) يساوي كالآتي:

مربع(ع)=مربع (س)+مربع(ص)–(2 س ص جتا?)


عندما تكون ?=90 درجة فإن الجيب التمام يساوي صفرا ونحصل على قانون فيثاغورس لمثلث القائم الزاوية كالآتي:


مربع(ع)=مربع(س)+مربع(ص) حيث الضلع (ع) يعتبر أطول ضلع في المثلث.


قوانين النسب المثلثية

تعتبر قوانين ومتطابقات النسب المثلثية من أشهر القوانين المستخدمة في مجال الرياضيات والتطبيقات الفيزيائية مثل: قانون الانعكاس، والانكسار، وتحليل القوى وغيرها من التطبيقات المهمة، ومن أشهر قوانين النسب المثلثية:

  • قوانين النسب المثلثية لمثلث القائم الزاوية:
    • جا ?=المقابل/الوتر
    • جتا ?=المجاور/الوتر
    • ظا ?=المقابل/المجاور
  • قوانين ومتطابقات النسب المثلثية العامة:
    • جا (? - ?)=(جا ? جتا ?)–(جتا ? جا ?)
    • جتا (? - ?)=(جتا ? جتا ?)–(جا ? جا ?)
    • ظا (? - ?)=(ظا? - ظا?) مقسومة على (1+ظا? ظا?)
    • مربع (جا ?)+مربع (جتا ?) تساوي1
  • الفرق بين مربعين ومكعبين:
    • الفرق بين مربعين=(مربع الأول – مربع الثاني)=(حاصل طرح الأول والثاني) مضروب (حاصل جمعهما) حيث تستخدم هذه المعادلة في تحليل عدد كبير من معادلات كثيرة الحدود من الدرجة الثانية.
    • الفرق بين مكعبين=(مكعب الأول – مكعب الثاني)=(الفرق بين الأول والثاني) مضروب (مربع الأول+مربع الثاني+حاصل ضرب الأول في الثاني) وتستخدم هذه الطريقة لتحليل معادلات كثيرة الحدود من الدرجة الثالثة.

اذكار الصباح - نوع غشاء البكاره - الحروف الابجدية - كلام رومانسي - شهر 12 - كلام عن الام - كلام جميل - صفحات القرآن - الجري السريع - ترددات القنوات - كلام جميل عن الحب - كلمات عن الام - كلام في الحب - عبارات تهاني - كلام حب و عشق - طرق إثارة - دعاء للمريض - كلام حلو - الحروف العربية - العشق - دعاء للميت - تفسير أحلام - ادعية رمضان - الوضوء الأكبر - أعرف نوع الجنين - كلام جميل