جدول المحتويات
الرياضيات
على الرغم من وجود فئة كبيرة لا تحب مادة الرياضيات وتجد صعوبة في فهمها، إلا أنها فعليا من المواد الممتعة الجميلة، كل ما تحتاجه هو التركيز، والتأسيس الصحيح منذ الصفوف الأولى، والمتابعة الدائمة لها. سنعرض في هذا المقال قانون مساحة متوازي المستطيلات، وبعض المسائل مع حلها بطريقة مبسطة وسهلة، لكن في البداية سنتكلم بشكل مختصر عن متوازي المستطيلات.
متوازي المستطيلات
- متوازي المستطيلات هو مجسم للمستطيل، وهو أحد الأشكال الهندسية المنتظمة، يتكون من ستة وجوه، أربعة وجوه جانبية، وجانبين في الأعلى وفي الأسفل، وسمي بمتوازي المستطيلات نظرا لأن وجوهه الستة لها شكل المستطيل.
- لمتوازي المستطيلات 12 حرف (وهي منطقة التقاء وجهين)، وثماني رؤوس (وهي الزوايا).
- كل وجهين متقابلين في متوازي المستطيلات هما متوازيان متطابقان متساويان في المساحة والحجم.
قانون مساحة متوازي المستطيلات
المساحة الكلية لمتوازي المستطيلات تساوي مجموع مساحات الأوجه المستطيلة الستة، أو المساحة الجانبية زائد مجموع مساحتي القاعدتين. أما المساحة الجانبية (مساحة جوانبه أي جوانبه المستطيلة بدون القاعدة وما يقابلها) فتساوي محيط القاعدة ضرب الارتفاع. وننوه هنا أن المساحة تعني قياس المنطقة المحصورة في حدود معينة، أما المحيط فهو طول الخط الذي يحيط بالشكل الهندسي.
أمثلة على قانون مساحة متوازي المستطيلات
- احسب المساحة الكلية لمتوازي مستطيلات إذا علمت أن طول المستطيل يساوي 5سم، وعرضه 3سم.
- احسب المساحة الجانبية والكلية لمتوازي مستطيلات محيط قاعدته 20سم وارتفاعه 50سم، طول محيط القاعدة 12سم، وعرضها 8سم.
- احسب المساحة الجانبية لمتوازي مستطيلات، إذا علمت أن مساحته الكلية تساوي 1200سم2، ومساحة قاعدته تساوي 200سم2، المساحة الكلية لمتوازي المستطيلات تساوي المساحة الجانبية+مساحة القاعدتين، وإن مساحة القاعدتين تساوي 200×2=400سم2، وبتطبيق 1200=المساحة الجانبية+400، تكون المساحة الجانبية تساوي 1200-400=800سم2.