الوسط الحسابي و يسمى أيضاً المتوسط الحسابي و من أسمائه أيضاً المعدل، هو عبارة عن مجموع مفردات مجتمع أو عينة مقسوما على عددها.
إذا كانت مفردات البيانات كلها متماثلة فإن الوسط الحسابي لها سيكون أحد تلك المشاهدات، فمثلاً لو لدينا مجتمع بياناته هي ( 5 ، 5 ، 5 ، 5 ، 5 ، 5 ، 5 ) فإن الوسط الحسابي لذلك المجتمع هو الرقم 5 ، و إذا طبّقنا القانون أعلاه بجمع جميع القيم و قسمتها على عددها نحصل على نفس النتيجة، و ذلك كما يلي:
5+5+5+5+5+5+5 = 35
35 ÷ 7 = 5
أمّا لو كانت مفردات المجتمع مختلفة فإنّه لحساب الوسط يجب إستخدام القانون السابق، و لا يمكن معرفة الوسط الحسابي مباشرة، فلو كانت مفردات مجتمع معين قيد الدراسة كما يلي ( 5 ، 7 ، 11 ، 4 ، 8 ، 12 ، 9 ، 7 ، 6 ، 15 ) فإنّ الوسط الحسابي لتلك البيانات يحسب كما يلي :
5+7+11+4+8+12+9+7+6+15 = 84
84 ÷ 10 = 8.4
إنّ ما تم حسابه عاليا يسمّى المتوسط الحسابي البسيط، لتساوي جميع القيم في الوزن النسبي فكل قيمة لها الوزن 1 ، أما لو إختلف الوزن النسبي ، و أردناأن نحسب متوسطا ًلتلك القيم فإننا نقوم بحساب ما يسمى المتوسط المرجح و يتم تسميته أيضاً المتوسط الموزون أو المعدل المرجح.
مثال ذلك لو كان لدينا 1000 طاولة و كان قد تم شراءالطاولة الواحدة بمبلغ 40 دينارا ثم قمنا لاحقا بشراء 4000 طاولة بمبلغ 50 دينارا للطاولة الواحدة، و أردنا أن نحسب متوسط كلفة الطاولة علينا، فإنّنا هنا لا نحسب معدلاً بسيطاً لأنّه سيعطي قيمة ليست دقيقة فالمتوسط البسيط هو :
( 40+50 ) ÷ 2 = 45 و لكنه غير دقيق كما قلنا
أمّا المتوسط (المعدل) الموزون فإنه أدق و أصح و يحسب كما يلي :
( (40*1000)+(50*4000) ) ÷ (1000+4000) = 48 و هذا هو الصحيح.