الدائرة
يمكن القول إنّ الدائرة هي الأساس الّذي تنطلق منه الهندسة في الرياضيات؛ فالدوائر هي تلك النقاط التي تدور جميعها حول مركزها؛ بحيث تكون أبعادها متساوية عن المركز. تعتبر الدوائر من الأشكال الهندسيّة ثنائية الأبعاد، وهي بذلك تختلف عن الأشكال الهندسيّة الأخرى. للدوائر أهميّة وفائدة كبيرة جداً في حياة الإنسان العادية، فالعديد من الأشياء التي يتعامل الإنسان معها في حياته تتكوّن أساساً من الدوائر؛ أي إنّها تحيط به أينما كان، ولهذا السبب فالإنسان بحاجة ماسة إلى أن يحلّلها ويفهمها ويعرف كلّ شيء عنها حتى يستطيع أن يبني عليها نظريّاته وتطبيقاته التي سيطبّقها في حياته اليومية. من هنا برزت لدينا قوانين الدوائر الّتي تعمل على إيجاد كلّ ما يحتاج إليه الإنسان العادي أثناء تحليله للدوائر التي يتعامل معها هذا الإنسان.
قبل الشّروع في التعرّض للقوانين التي تحكم الدوائر، لا بدّ من توضيح أمر مهم، وهو أنّ صيغ تحليل الدوائر لا ترتبط ارتباطاً وثيقاً بالثابت " باي " أو " ط " كما يسمّيه العرب، وهذا الثابت يكون مقداره مساوياً لـ 3.14. تمّ إيجاد هذا الثابت عن طريق التجربة العمليّة؛ حيث تمّ أولاً صنع عدد من الدوائر من الحبال، ومن ثمّ قياس أطوال المحيطات عن طريق قياس أطوال الحبال الّتي صنعت منها هذه الدوائر، ثمّ تم أخذ النسبة بين كلٍّ من طول المحيط وطول القطر عن طريق قسمة المحيط على القطر، فتوصّلوا إلى أنّ النسبة بين كلٍّ من محيط الدائرة وقطره هي نسبة ثابتة لا تتغيّر، وهي تساوي 3.14، وهذا هو الثابت " ط ". ومن هنا فإنّه يمكن القول إنّ الثابت " ط " يمثّل النسبة بين كلٍّ من محيط الدائرة وبين طول القطر، بغضّ النظر عن محيط الدائرة أو عن طول القطر أو عن مساحة الدائرة.
قانون مساحة الدائرة
قانون مساحة الدائرة يُعطى بالعلاقة: ( مساحة الدائرة = " ط " × مربع نصف القطر )، أمّا قانون محيط الدائرة فيُعطى بالعلاقة: ( محيط الدائرة = " ط " × طول القطر ). فمثلاً، لو كانت لدينا دائرة طول قطرها يساوي 10 سم، باستعمال هذا المعطى فقط، يمكننا مباشرةً أن نحسب طول محيط الدائرة، كما ويمكننا أن نحسب مساحة الدائرة؛ فطول محيط الدائرة = ( " ط " × 10 ) = 31.4 سم، أمّا مساحة هذه الدائرة فيمكن إيجادها عن طريق: ( مساحة الدائرة = " ط " × 25 ) = 78.5 سم. ومن هاتين العلاقتين يمكن مباشرةً إيجاد القيم التي يحتاجها أيّ إنسان يريد توظيف شكل الدائرة في أيّ تطبيق يريده أو يواجهه في حياته.