قانون فيثاغورس

قانون فيثاغورس

فيثاغورس

تعود نظرية فيثاغورس إلى العالم اليوناني فيثاغورس، وقد سميت هذه النظرية باسمه، ولم يكن فيثاغورس مجرد عالم رياضي، إنما كان مفكرا بارزا، وكانت إقامته في مستعمرة كرتون اليونانية في دولة ايطاليا، وكان جل اهتمام فيثاغورس بعدد من المواضيع العلمية المختلفة.


أهمية وفائدة قانون فيثاغورس

تعد نظرية فيثاغورس من أهم النظريات منذ القدم، فهي لا تزال تطبق في علم الرياضيات إلى يومنا هذا، ولا تقتصر استخداماتها في علم الرياضيات التجريدية، والمثلثات، وعلم الهندسة فقط، بل يصل استخدامها إلى علوم الكيمياء والفيزياء، وتساعد في إثبات العديد من نظرياتها، ولها دور كبير في علوم الرسوم البيانية، والملاحة البحرية، وعلوم الفضاء، والإنشاءات الهندسية.


قانون فيثاغورس

يمكن وصف المثلثات وتسميتها بعدة طرق، منها ما يعتمد أضلاع المثلث، ومنها ما يعتمد الزوايا فهناك المثلث المتساوي الأضلاع والمثلث المتساوي الساقين، كما أن هناك المثلث حاد الزوايا والمثلث المنفرج الزاوية والمثلث قائم الزاوية، ومن خواص هذا المثلث أن قياس إحدى زواياه 90 درجة، والزاويتين الأخريين حادتين، والنظرية الشهيرة في علم المثلثات تنص على أن: (مجموع مربعي طولي ضلعي القائمة يساوي مربع الوتر).


أمثلة على نظرية فيثاغورس

لو قلنا أن مثلثا زاويته القائمة هي (ب)، والضلع المقابل للزاوية القائمة هو (أ ج) والأضلاع المكونة للزاوية القائمة هي (أ ب) و (ب ج) وبذلك تكون الصيغة الجبرية لتظرية فيثاغورس على المثلث أ ب ج كما يلي: (أ ب)²+(ب ج)² = (أ ج)².


بما أن (أ ب)² يمكن اعتبارها مساحة مربع طول ضلعه (أ ب) وكذلك الحال بالنسبة (ب ج)، (أ ج)، فإنه يمكن كتابة نظرية فيثاغورس باستخدام المساحة كما يلي: في المثلث القائم يكون مجموع مساحتي المربعين المنشأين على ضلعي الزاوية القائمة يساوي مساحة المربع المنشأ على الوتر.


  • المثال الأول: احسب طول الضلع المجهول (س) إذا كان الوتر = 15سم وأحد الأضلاع = 9، بما أن المثلث قائم الزاوية فهو يحقق نظرية فيثاغورس وعليه فإن:
²9 + س² = ²15 81 + س² = 225 ومنه س² = 225 - 81 = 144 س= 144 ? = 12سم


  • المثال الثاني: يوجد مثلثان متداخلان بحيث يرتبطان بنفس الزاوية القائمة، وبذلك يحققان نظرية فيثاغورس، حيث إن الزاوية القائمة هي ل للمثلث (هـ ل ن) والمثلث الثاني (هـ ل م)، وعليه فإنه يمكن تحديد أضلاع ووتر المثلثين كما يلي:
المثلث الأول أضلاعه (هـ ل) و (ل م) والوتر (هـ م). المثلث الثاني أضلاعه (هـ ل) و (ل ن) والوتر (هـ ن). بذلك تكون الصيغة الجبرية لنظرية فيثاغورس لكل منهما كالآتي: المثلث هـ ل ن: (هـ ل)² + (ل ن)² = (هـ ن)². المثلث هـ ل م: (هـ ل)² + (ل م)² = (هـ م)².

اذكار الصباح - نوع غشاء البكاره - الحروف الابجدية - كلام رومانسي - شهر 12 - كلام عن الام - كلام جميل - صفحات القرآن - الجري السريع - ترددات القنوات - كلام جميل عن الحب - كلمات عن الام - كلام في الحب - عبارات تهاني - كلام حب و عشق - طرق إثارة - دعاء للمريض - كلام حلو - الحروف العربية - العشق - دعاء للميت - تفسير أحلام - ادعية رمضان - الوضوء الأكبر - أعرف نوع الجنين - كلام جميل